Hubunganantara Mamak dan Kamanakan ini juga tertuang dalam pepatah minang: Anak dipangku, kamanakan dibimbiang. Bako – Anak Pisang. Hubungan antara Bako dan Anak Pisang ini terjadi karena adanya pernikahan antara ibu kamu dan ayah kamu. Misalkan A adalah ibu kamu dan B adalah ayah kamu serta kamu adalah C yang merupakan anak dari keduanya.
PENGUJIANTERHADAP CAPM. Capital Assets Pricing Model (CAPM) adalah suatu model yang dikembangkan untuk menjelaskan suatu keadaan keseimbangan hubungan antara risiko setiap asset apabila pasar modal berada dalam seimbang. Perhatian mengenai model keseimbangan ini secara menerus dikembangkan.
Terdapat13 pemeran yang berperan aktif dalam film Dua Garis Biru. Berikut adalah diantaranya. 1. Bima – Angga Aldi Yunanda. (Instagram/@anggayunandareal16) Angga Aldi Yunanada lahi di Lombok pada 16 Mei 2000. Angga adalah seorang aktor dan penyanyi asal Indonesia yang memulai debutnya sebagai aktor sinetron.
Titika, b, dan c sebidang. 2. Hubungan Dua Garis. a. Dua garis sejajar. Dua garis atau lebih dikatakan sejajar apabila garis-garis tersebut terletak pada satu bidang datar dan tidak akan pernah bertemu atau berpotongan jika garis tersebut diperpanjang sampai tak berhingga. Garis a dan garis b sejajar. b.
Contohnyajarak Jakarta - Malang dengan pesawat adalah 1,5 jam. 3. Keterjangkauan. Konsep geografi ini mengacu pada kemudahan untuk mencapai suatu objek yang dipengaruhi oleh kondisi geografis suatu wilayah. Contohnya, dari Jakarta akan lebih mudah menjangkau kota Padang daripada kepulauan Mentawai.
Korelasiadalah ukuran statistik yang menentukan hubungan bersama atau asosiasi dua variabel. Regresi menggambarkan bagaimana variabel independen secara numerik terkait dengan variabel dependen. Pemakaian. Untuk mewakili hubungan linear antara dua variabel. Agar sesuai dengan garis terbaik dan memperkirakan satu variabel berdasarkan variabel lain.
PadaHubungan sudut-sudut pada dua garis sejajar ini, ada beberapa hubungan sudut yang kita peroleh yaitu sudut bersebrangan, sudut sehadap dan sudut-sudut sepihak. Misalkan terdapat dua garis yang sejajar yaitu garis m dan garis n . Kemudian kita buat garis l yang memotong kedua garis. Untuk lebih jelasnya, berikut ilustrasi gambarnya, Dari
Garissumbu tersebut, selalu TEGAK LURUS dengan garis pusat kedua lingkaran. Dua Lingkaran akan saling beririsan, jika memenuhi sifat berikut: dimana: Soal Latihan: Tentukan Hubungan antara kedua lingkaran berikut: Persamaan Garis Singgung Persekutuan Dua Lingkaran. Mencari Jari - Jari.
HubunganDua Garis Lurus pada Persamaan (x - x1). Marilah membahas beberapa contoh soal dan pembahasannya berikut ini. 1) Tentukan persamaan garis lurus yang sejajar dengan garis y = 3x + 5 dan melalui titik (2, -1). Sehingga gradien garis k adalah -2. Sehingga persamaan garis k adalah garis yang melalui titik (6, 0) dan bergradiem -2
Garistransversal adalah garis yang memotong dua buah atau lebih garis lain. Apabila Perhatikan gambar berikut! Gambar 16. Dua garis tidak sejajar yang dipotong oleh satu garis transversal sejajar dipotong satu garis transversal dan hubungan dua garis dapat diketahui sudut-sudut yang mempunyai besar yang sama dan sudut berpelurus. 3 4 1 2
7xDxsvT. Hubungan Antar Dua Garis dan Sudut Yang Terbentuk merupakan materi yang mengulas hubungan antar dua garis yang berpotongan serta sudut yang terbentuk dari perpotongan dua garis sejajar oleh sebuah garis. Hubungan dua garis dapat berupa berpotongan, sejajar, berimpit, dan bersilangan. Sedangkan sudut yang terbentuk dari perpotongan dua garis sejajar oleh sebuah garis dapat berupa sudut sehadap, bertolak belakang, dalam bersebrangan, luar bersebrangan, sepihak, dan luar sepihak. Sudut yang terbentuk dari perpotongan dua garis dapat memungkinkan menghitung besar sudut lain jika diketahui besar suatu sudut. Misalkan diketahui besar sebuah sudut dari sudut yang terbentuk pada perpotongan dua garis sejajar oleh sebuah garis. Informasi besar sudut yang diberikan tersebut dapat memungkinkan untuk menghitung besar sudut lain. Bagaimana caranya? sobat idschool dapat mencari tahu cara mengetahui besar sudut dalam hubungan antar sudut melalui ulasan pada halaman ini. Baca juga Persamaan Garis Lurus Materi hubungan antara dua garis dan sudut yang terbentuk sering keluar di ujian nasional. Jadi, sebaiknya sobat idschool menyimak dengan baik materi mengenai hubungan antar dua garis dan sudut yang terbentuk berikut. Table of Contents Hubungan Antar Dua Garis Jenis Sudut dan Besar Sudut yang Terbentuk dari Perpotongan Dua Garis Contoh Soal dan Pembahasan Contoh 1 – Soal Besar Sudut Berpelurus Contoh 2 – Soal Besar Sudut Garis adalah kumpulan titik-titik yang banyaknya tak terhingga yang saling bersebelahan dan memanjang ke kedua arah. Hubungan antara dua garis dapat berupa sejajar, berpotongan, berimpit, dan bersilangan. BerimpitDua garis tersebut dikatakan berimpit jika semua titik pada sebuah garis terletak pada garis lainnya, atau sebaliknya. Dua Garis SejajarKarakteristik dua garis sejajar adalah kedua garis terletak pada satu bidang datar dan tidak mempunyai titik persekutuan titik potong. BerpotonganDua garis dikatakan berpotongan jika dua garis itu mempunyai satu titik persekutuan titik potong. Dua Garis BersilanganDua garis bersilangan jika kedua garis terletak pada bidang yang berbeda dan kedua garis tidak sejajar dan tidak berpotongan. Baca Juga Cara Menentukan Sudut Antara Dua Tali Busur Lingkaran yang Berpotongan Jenis Sudut dan Besar Sudut yang Terbentuk dari Perpotongan Dua Garis Sebelum melanjutkan materi mengenai hubungan antar dua garis dan sudut yang terbentuk, mari kita mengenal sudut terlebih dahulu. Sudut adalah daerah yang dibatasi oleh dua sinar garis yang bertemu di satu titik pangkal. Perhatikan gambar sudut di bawah. Keterangan O = titik pangkal, OA dan OB = kaki sudut, dan ∠AOB = daerah sudut. Dilihat dari besar sudutnya, jenis – jenis sudut meliputi sudut lancip, sudut siku – siku, sudut tumpul, sudut lurus, dan sudut refleks. Kriteria masing – masing jenis sudut dapat disimak pada penjelasan di bawah. Jenis – Jenis Sudut Sudut Lancip 0o ≤ θ < 90o Sudut Siku-Siku θ = 90o Sudut Tumpul 90o < θ < 180o Sudut Lurus θ ≤ 180o Sudut Refleks 180o < θ < 360o Pembahasan hubungan antar sudut juga memuat hubungan sudut komplemen dan suplemen. Apa itu sudut komplemen dan sudut suplemen? Simak penjelasannya berikut. Komplemen ~ Sudut Berpenyiku Hubungan antar sudut komplemenLPenyiku ∠α = ∠βPenyiku ∠β = ∠αJumlah besar ∠α + ∠β = 90o Sudut Berpelurus Suplemen Hubungan antar sudut suplemenPelurus ∠α = ∠βPelurus ∠β = ∠α Jumlah besar ∠α + ∠β = 180o Sudut-Sudut yang Terbentuk Oleh Dua Garis Sejajar dan Dipotong Sebuah Garis Dua buah garis sejajar, yaitu garis g dan garis h, dipotong oleh sebuah garis yang tidak sejajar dengan keduanya. Dari perpotongan garis tersebut akan terbentuk sudut – sudut yang terdiri atas sudut sehadap, bertolak belakang, dalam bersebrangan, luar bersebrangan, sepihak, dan luar sepihak. Perhatikan gambar di bawah! Pasangan sudut-sudut sehadap memiliki besar sudut yang sama∠A1 = ∠B1∠A2 = ∠B2∠A3 = ∠B3∠A4 = ∠B4 Sudut dalam berseberangan mempunyai besar sudut yang sama ∠A4 = ∠B1∠A3 = ∠B2 Sudut luar berseberangan mempunyai besar sudut yang sama∠A1 = ∠B4∠A2 = ∠B3 Pasangan sudut saling bertolak belakang mempunyai besar sudut yang sama∠A1 = ∠A4∠A2 = ∠A3∠B1 = ∠B4∠B2 = ∠B3 Pasangan sudut dalam sepihak jumlah sudutnya adalah 180o∠A3 +∠B1 = 180o∠A4 + ∠B2 = 180o Sudut Luar Sepihak jumlah sudutnya 180o∠A1 + ∠B3 = 180o∠A2 + ∠B4 = 180o Baca Juga Sudut Pusat dan Sudut Keliling pada Lingkaran Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan hubungan antar dua garis dan sudut di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Besar Sudut Berpelurus Perhatikan gambar berikut! Besar pelurus sudut KLN adalah ….A. 31o B. 72oC. 85o D. 155o Pembahasan Jumlah dua sudut yang saling berpelurus adalah 180o, maka dapat diperoleh persamaan dan penyelesaian untuk mencari nilai x seperti berikut. Mencari nilai x3x + 15o + 2x + 10o = 180o5x + 25o = 180o5x = 180o ‒ 25o5x = 155ox = 155/5 =31o Besar pelurus ∠KLN = besar ∠MLNm ∠MLN = 2x + 10om ∠KLN = 2×31o + 10om ∠KLN = 62o + 10o = 72o Jadi, besar pelurus sudut KLN adalah 72o. Jawaban B Contoh 2 – Soal Besar Sudut Perhatikan gambar berikut! Besar ∠BAC adalah ….A. 78o B. 76o C. 55o D. 50o PembahasanUntuk menyelesaikan jenis soal ini, sobat idschool dapat melakukan dua cara yang berbeda dengan hasil yang sama. Simak kedua cara menyelesaikan soal besar sudut seperti di atas dan pilih cara terbaik yang sobat idschool sukai. Cara 1 Menghitung besar ∠ACB∠ACB + ∠BCD = 180o∠ACB + 114o = 180o∠ACB = 180o – 114o = 66o Selanjutnya hitung nilai x melalui ΔACB, perhatikan ΔABC dan INGAT bahwa jumlah ketiga sudut pada segitiga adalah 180o. ∠BAC + ∠ABC + ∠ACB = 180ox + x + 4o + 66o = 180o 2x + 70o = 180o 2x = 180o – 70o 2x = 110ox = 110/2 = 55o Jadi, besar ∠BAC = x = 55o Cara 2 mencari nilai x dengan cara kedua dapat dikatakan sebagai rumus cepat. Mencari nilai xx + x + 4o = 114o2x = 114o – 4o2x = 110ox = 110/2 = 55o Jadi, besar ∠BAC = x = 55o Jawaban C Oke, sekian materi mengenai hubungan antar dua garis dan sudut yang terbentuk, mudah bukan? Jika sobat idschool memiliki pertanyaan mengenai hubungan antar dua garis dan sudut yang terbentuk bisa tanyakan lewat komentar. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Aritmatika Sosial – SMP
Dua garis yang saling berpotongan dan membentuk Sudut Siku-siku memiliki hubungan Tegak Lurus. makasih kakkkkkkkkkkkk,awas kalau salah THANKS ya jawaban nya bener sama aku yey jadi aku dapet nilai 100 nih sekali lagi terima kasih ya kak untuk jawaban nya,.,.,.,.,.,.,.,.,.,.,.,
Blog Koma - Sebelumnya telah dibahas tentang "Persamaan Garis Lurus dan Grafiknya" serta "Gradien dan Menyusun Persamaan Garis Lurus". Kali ini kita akan membahas tentang hubungan dua garis lurus. Untuk memudahkan mempelajari materi ini, sebaiknya pelajari dahulu materi "Gradien". Hubungan dua garis yang akan dipelajari adalah dua garis yang sejajar berimpit dan tegak lurus berpotongan. Hubungan dua garis lurus sangat penting untuk kita pelajari karena biasanya untuk menentukan besarnya gradien kemiringan suatu garis bergantung dari garis lain. Dengan mengetahui hubungan kedua garis, maka kita pasti bisa menentukan gradien masing-masing. Selain penerapannya pada garis lurus secara langsung, hubungan dua garis khususnya gradiennya juga berguna ketika kita mempelajari materi garis singgung kurva dan garis singgung lingkaran serta garis singgung pada irisan kerucut. Hubungan Dua Garis Lurus Macam - macam Hubungan Dua Garis Lurus Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ . Ada beberapa hubungan yang bisa kita peroleh dari kedua garis tersebut, yaitu *. sejajar Dua garis sejajar syaratnya gradiennya sama $m_1=m_2$. Jika dilihat dari koefisiennya, syarat kedua garis sejajar yaitu $ \frac{a}{p} = \frac{b}{q} $ . Jika $ \frac{a}{p} = \frac{b}{q} = \frac{c}{r} \, $ , maka kedua garis tersebut berimpit. Dan jika $ \frac{a}{p} \neq \frac{b}{q} , \, $ maka kedua garis pasti berpotongan. *. Tegak lurus Dua garis tegak lurus syaratnya perkalian gradien kedua garis hasilnya $ -1 \, $ atau $ m_1 \times m_2 = -1 $. Jika dilihat dari koefisiennya, syarat dua garis tegak lurus yaitu $ \frac{a}{b} = -\frac{q}{p} $ . Contoh 1. Dari Persamaan garis berikut, manakah pasangan garis yang sejajar dan tegak lurus! a. $ 2x - y = 5 $ b. $ 6x + 2y -3 = 0 $ c. $ x + 2y -7 = 0 $ d. $ -4x + 2y = 1 $ e. $ -x + 3y - 7 = 0 $ Penyelesaian *. Kita tentukan gradien masing-masing Konsep $ ax+by=c \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{a}{b} $ a. $ 2x - y = 5 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{-1} = 2 $ b. $ 6x + 2y -3 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{6}{2} = -3 $ c. $ x + 2y -7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{2} $ d. $ -4x + 2y = 1 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-4}{2} = 2 $ e. $ -x + 3y - 7 = 0 \rightarrow m = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{-1}{3} = \frac{1}{3} $ *. Garis yang sejajar adalah garis a dan garis d. *. Garis yang tegak lurus adalah garis a dan c, serta garis b dan garis e. 2. Tentukan persamaan garis lurus yang melalui titik -1,-3 dan sejajar dengan garis $ y = -3x + 5 $ ! Penyelesaian garis $ y = -3x + 5 \rightarrow m_1 = -3 $ *. Karena garis yang dicari sejajar dengan garis $ y = -3x + 5, \, $ maka gradiennya sama, sehingga gradien garis yang dicari adalah $ m = m_1 = -3 $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =-1,-3 \, $ dan gradien $ m = -3 $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - -3 & = -3x-1 \\ y + 3 & = -3x+1 \\ y + 3 & = -3x - 3 \\ y & = -3x - 6 \end{align} $ Jadi, persamaan garisnya adalah $ y = -3x - 6 $ 3. Tentukan persamaan garis lurus yang melalui titik -1,-3 dan tegak lurus dengan garis $ y = -3x + 5 $ ! Penyelesaian garis $ y = -3x + 5 \rightarrow m_1 = -3 $ *. Karena garis yang dicari tegak lurus dengan garis $ y = -3x + 5, \, $ maka $ = -1 \rightarrow -3. m_2 = -1 \rightarrow m_2 = \frac{1}{3} \, $ . artinya gradien garis yang kita cari adalah $ m = \frac{1}{3} $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =-1,-3 \, $ dan gradien $ m = \frac{1}{3} $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - -3 & = \frac{1}{3}x-1 \\ y + 3 & = \frac{1}{3}x+1 \\ 3y + 9 & = x + 1 \\ x - 3y & = 8 \end{align} $ Jadi, persamaan garisnya adalah $ x - 3y = 8 $ 4. Diketahui garis $ p+1x - 3y = 3 $ tegak lurus dengan garis $ 2x + 2p - 1y + 3 = 0 , \, $ tentukan nilai $ 4p - 1 $ Penyelesaian *. Menentukan gradien masing-masing $ p+1x - 3y = 3 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{p+1}{-3} = \frac{p+1}{3} $ $ 2x + 2p - 1y + 3 = 0 \rightarrow m_2 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{2}{2p-1} $ *. Syarat dua garis tegak lurus $ = -1 $ $ \begin{align} & = -1 \\ \left \frac{p+1}{3} \right . \left - \frac{2}{2p-1} \right & = -1 \\ \left \frac{2p+2}{6p - 3} \right & = 1 \\ 2p + 2 & = 6p - 3 \\ 6p - 2p & = 2 + 3 \\ 4p & = 5 \\ p & = \frac{5}{4} \end{align} $ Sehingga nilai $ 4p - 1 = 4. \frac{5}{4} - 1 = 5 - 1 = 4 $ Jadi, nilai $ 4p-1 = 4 $ Besarnya sudut antara Dua Garis Lurus Misalkan diketahui dua garis lurus $ ax+by=c \, $ dan $ px+qy=r \, $ yang masing-masing memiliki gradien $ m_1 \, $ dan $ m_2 . \, $ Besarnya sudut antara kedua garis adalah $ \alpha , \, $ yang dapat ditentukn dengan rumus $ \tan \alpha = \frac{m_1 - m_2}{1+ } $ Contoh Tentukan besarnya sudut yang dibentuk oleh kedua garis $ y = \sqrt{3}x + 3 \, $ dan garis $ y = -\sqrt{3}x + 7 $ ! Penyelesaian *. Menentukan gradien masing-masing $ y = \sqrt{3}x + 3 \rightarrow m_1 = \sqrt{3} $ $ y = -\sqrt{3}x + 7 \rightarrow m_2 = -\sqrt{3} $ *. Menentukan besar sudut kedua garis $ \begin{align} \tan \alpha & = \frac{m_1 - m_2}{1+ } \\ & = \frac{\sqrt{3} - -\sqrt{3}}{1+\sqrt{3}.-\sqrt{3} } \\ & = \frac{2\sqrt{3}}{1+ -3 } \\ & = \frac{2\sqrt{3}}{-2} \\ \tan \alpha & = -\sqrt{3} \end{align} $ Diperoleh $ \tan \alpha = - \sqrt{3} \, $ , berdasarkan tabel trigonometri maka diperoleh $ \alpha = 120^\circ $ Atau sudut terkecil kedua garis adalah $ 180^\circ - 120^\circ = 60^\circ $ Jadi, besar sudut yang dibentuk oleh kedua garis adalah $ 60^\circ $ . Menentukan perpotongan dua garis lurus Contoh Tentukan persamaan garis lurus yang melalui perpotongan garis $ 3x - y = 2 \, $ dan garis $ 2x + y = 3 \, $ serta tegak lurus dengan garis $ x - 3y + 2 = 0 $ ! Penyelesaian *. Menentukan titik potong kedua garis dengan eliminasi dan substitusi $\begin{array}{cc} 3x - y = 2 & \\ 2x + y = 3 & + \\ \hline 5x = 5 & \\ x = 1 & \end{array} $ Persii $ 2x + y = 3 \rightarrow 2 . 1 + y = 3 \rightarrow y = 3 - 2 = 1 $ Sehingga titik potong kedua garis adalah 1,1 *. Menentukan gradien $ x - 3y + 2 = 0 \rightarrow m_1 = -\frac{\text{koefisien } x }{\text{koefisien } y } = - \frac{1}{-3} = \frac{1}{3} $ *. Karena garis yang dicari tegak lurus dengan garis $ x - 3y + 2 = 0, \, $ maka $ = -1 \rightarrow \frac{1}{3}. m_2 = -1 \rightarrow m_2 = -3 $ . artinya gradien garis yang kita cari adalah $ m = -3 $ *. Menyusun persamaan garis lurusnya garis melalui titik $x_1,y_1 =1,1 \, $ dan gradien $ m = -3 $ $ \begin{align} y - y_1 & = mx-x_1 \\ y - 1 & = -3x-1 \\ y - 1 & = -3x + 3 \\ 3x + y & = 4 \end{align} $ Jadi, persamaan garisnya adalah $ 3x + y = 4 $